(An Autonomous Institute Affiliated to CSVTU Bhilai)

SYLLABUS

B. Tech. Eight Semester- Computer Science & Engineering (Artificial Intelligence, Artificial Intelligence and Machine Learning, Bigdata Analytics, Internet of Things, Gaming Technology)

SYLLABUS

B.TECH. (Computer Science

& Engineering - Artificial Intelligence, Artificial

Intelligence and Machine Learning, Bigdata Analytics,

Internet of Things, Gaming Technology)

EIGHTH SEMESTER

		11 th July 2023	1.00	Applicable for
				AY 2023-24
Chairman (AC)	Chairman (BoS)	Date of release	Version	Unwards

(An Autonomous Institute Affiliated to CSVTU Bhilai)

SYLLABUS

B. Tech. Eight Semester- Computer Science & Engineering (Artificial Intelligence, Artificial Intelligence and Machine Learning, Bigdata Analytics, Internet of Things, Gaming Technology)

SI. No	Board of Studies (BOS)	Courses (Subject)) Course Code		eriod j Weeł	per s	So Exa Th	cheme aminat eorv/I	of tion .ab	Tota Mark	Credi
•	× · ·			L	Т	Р	ESE	CT	TA	s S	t
1	Computer Science & Engineering	Computer Vision	CS102801	3	1	-	100	20	30	150	4
4	Computer Science & Engineering	Professional Elective IV	Refer table IV	2	1	-	100	20	30	150	3
5	Computer Science & Engineering	Open Elective III	Refer table III	3	-	-	100	20	30	150	3
6	Computer Science & Engineering	Computer Vision with Open CV Lab	CS102891	-	-	2	25	-	25	50	1
7	Computer Science & Engineering	Advanced R- Programming Lab	CS102892	-	-	2	25	-	25	50	1
8	Computer Science & Engineering	Capstone Project Phase II	CS102895	-	-	16	300	-	150	450	8
		Total		8	2	20	650	60	290	1000	20

L: Lecture, T: Tutorial, P: Practical,

actical,

ESE : End Semester Exam

CT: Class test TA: Teacher's assessment

Table-I: Professional Elective – IV [8th Sem]

	Sl. No.	Board of Studies (BOS)	Courses (Subject)	Course Code
Ī	1	Computer Science and Engg	Parallel Processing and Computing	CS102821
Ī	2	Computer Science and Engg	Generative AI	CS110822
Ī	3	Computer Science and Engg	Introduction to Quantum Computing	CS110823
ľ	4	Computer Science and Engg	Reinforcement Learning	CS110824

Table-II: Open Elective – III [8th Sem]

Sl. No.	Board of Studies (BOS)	Courses (Subject)	Course Code
1	Computer Science and Engg.	Cyber Law & Intellectual Property	CS100841

		11 th July 2023	1.00	Applicable for AY 2023-24
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute Affiliated to CSVTU Bhilai)

SYLLABUS

Subject Code CS102801	Code 601Computer Vision with Open CV		T = 0	P = 0	Credits = 3
Evaluation	ESE	СТ	ТА	Total	ESE Duration
Scheme	100	20	30	150	3 Hours

Course Objectives	Course Outcomes		
 The objective of the course to: 1. Understanding image formation, including camera models, pixel representation, and colour spaces. 2. Exploring computer vision techniques such as feature extraction, object detection, and image segmentation. 3. Open CV experience: provide practical exposure to Open CV tools for image 4. Introduce students to pattern recognition concepts, including supervised and unsupervised learning approaches. 5. Enable students to build real-world applications using computer vision techniques Students will be able to: CO1 Students will be proficient in bar processing tasks, including filter detection, and image enhancement. CO2 Understand and apply technid detecting objects in images and view open CV. CO3 Feature extraction competence relevant features from images CO4 Understanding gain insights im recognition algorithms and their ap CO5 implement computer vision projo Open CV. 			
UNIT 1 Introduction to Computer Vision and Image Processing: Basics of computer vision and image processing. various applications of computer vision across different industries. how to apply image processing and analysis techniques to computer vision problems. The unit will utilize Python, Pillow, and OpenCV for basic image processing and perform image classification and object detection.			
Unit – II: Image Filtering and Enhancement: Image filtering and enhancement techniques. how to use Open CV to apply filters to images, colour spaces, blurring, sharpening, and edge detection. enhance images using techniques histogram equalization, colour adjustment using curves.			
Unit – III: Geometric Transforms and Image F	eatures:	CO3 7 Hrs.	

		11 th July 2023	1.00	Applicable for AY 2023-24
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute Affiliated to CSVTU Bhilai)

SYLLABUS

B. Tech. Eight Semester- Computer Science & Engineering (Artificial Intelligence, Artificial Intelligence and Machine Learning, Bigdata Analytics, Internet of Things, Gaming Technology)

Geometric Transforms-Affine Transform Homography Geometric Transforms in				
OpenCV, Image Features ORB, ORB Feature in Open CV, Feature Matching- Different,				
Feature Matching Algorithms in Open CV, RANSAC, Application: Image Alignment				
Unit – IV: Object Detection and Tracking:				
Object detection and tracking techniques. how to use Open CV to detect objects in images	CO4			
and track them over time. how to use deep learning techniques for object detection- Single				
Shot multi box detector (SSD) & You Only Look Once detector (YOLO), Face Detection-				
SSD based Face Detector.				
Unit – V: Image Segmentation and Recognition:				
Image segmentation and recognition techniques. image segmentation using Grabcut,	C05			
Grabcut theory, Grabcut in Open CV, how to use Open CV to perform optical character				
recognition (OCR) on text in images. image classification- histogram of oriented gradients				
(HOG), support vector machine (SVM), eveglass classifier in Open CV				

Text Books:

S. No.	Title	Author(s)	Publisher
1	Learning OpenCV: Computer Vision with the OpenCV Library	Gary Bradski	O'Reilly Media
2	Learning OpenCV 5 Computer Vision with Python, Fourth Edition	Joseph Howse, Joe Minichino	Packt Publications

S. No.	Title	Author(s)	Publisher
1	Learn Computer Vision Using OpenCV with Deep Learning CNNs and RNNs	Sunila Gollapudi	Apress Publications

		11 th July 2023	1.00	Applicable for AY 2023-24
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute Affiliated to CSVTU Bhilai)

SYLLABUS

B. Tech. Eight Semester- Computer Science & Engineering (Artificial Intelligence, Artificial Intelligence and Machine Learning, Bigdata Analytics, Internet of Things, Gaming Technology)

CS102891	Computer Vision Lab	L=0	Т=0	P = 2	Credits = 1
	ESE	СТ	ТА	Total	ESE Duration
Evaluation Scheme	25	0	25	50	3 Hours

Course Objectives	Course Outcomes
 Course Objectives: To be able to use python for image handling and processing. To perform geometric transformation and computer homography matrix in python. To be able to perform perspective transformation, edge detection, line detection and corner detection. To be able to implement SIFT, SURF and HOG in python. 	 Students will be able to: (after undergoing the course, students will be able to) CO1 Apply python for image handling and processing. CO2 Apply python for geometric transformation and computer homography matrix. CO3 Apply python for perspective transformation, edge detection, line detection and corner detection. CO4 Apply python for SIFT, SURF and HOG.

List of Experiments

CO 12 Hrs.

Guidelines for Laboratory Conduction:

- Prior knowledge of Linear Algebra, Probability Theory, Machine Learning, Artificial Neural Network, Python programming language is essential.
- Operating System recommended: 64-bit Open-source Linux or its derivative
- Recommended tools for the implementation: Python, Open CV, Tensor Flow, Pytorch, MATLAB, etc.
- Use of the Anaconda platform is encouraged.

Write programs to perform following activities:

- 1. Perform basic image handling and processing operations on the image.
- 2. Geometric transformation.
- 3. Compute homography matrix.
- 4. Perspective transformation.
- 5. Camera calibration.
- 6. Compute fundamental matrix.
- 7. Edge detection, line detection and corner detection.

		11 th July 2023	1.00	Applicable for AY 2023-24
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute Affiliated to CSVTU Bhilai)

SYLLABUS

B. Tech. Eight Semester- Computer Science & Engineering (Artificial Intelligence, Artificial Intelligence and Machine Learning, Bigdata Analytics, Internet of Things, Gaming Technology)

- 8. SIFT feature descriptor.
- 9. SURF and HOG feature descriptor.
- 10. project based on computer vision application.

Text Books:

S. No.	Title	Author(s)	Publisher
1	Programming Computer Vision with Python	Jan Erik Solem	O'Reilly Media, ISBN: 978 1449316549
2	Practical Machines Learning for Computer Vision: End-to-End Machine Learning for Images	Valliappa Lakshmanan	O'Reilly Media, ISBN: 9391043836

		11 th July 2023	1.00	Applicable for AY 2023-24
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute Affiliated to CSVTU Bhilai)

SYLLABUS

Subject Code CS102892	Advance R- Programming Lab	L=0	T=0	P = 2	Credits = 1
Evaluation Scheme	ESE	СТ	ТА	Total	ESE Duration
	25	0	25	50	3 Hours

Course Objectives	Course Outcomes
 Course Objectives: To develop an in-depth understanding of advanced R programming concepts such as functional programming, object-oriented programming, and debugging. To learn how to write efficient and reusable code for data analysis and visualization. To gain hands-on experience with machine learning algorithms and statistical modeling techniques. To learn how to work with large datasets and perform data wrangling tasks using R. To develop skills in web scraping, text mining, and data integration using R. 	 Students will be able to: CO1 Students will be able to write efficient and reusable code for data analysis and visualization. CO2 Students will be able to apply machine learning algorithms and statistical modeling techniques to real-world problems. CO3 Students will be able to work with large datasets and perform data wrangling tasks using R. CO4 Students will be able to develop skills in web scraping, text mining, and data integration using R. CO5 Students will be able to design and implement custom R packages for data analysis and visualization.
List o	of Experiments CO 12 Hrs.

- 1. **Data Cleaning:** Write a R program that cleans and preprocesses data by removing missing values, duplicates, and outliers.
- 2. **Data Visualization:** Create a R program that generates a variety of visualizations such as scatter plots, histograms, and heat maps.
- 3. Machine Learning: Develop a R program that uses machine learning algorithms to predict outcomes based on input data.
- 4. **Web Scraping:** Write a R program that extracts data from websites and stores it in a structured format.
- 5. **Text Mining:** Create a R program that analyzes text data to extract insights such as sentiment analysis, topic modeling, and text classification.
- 6. Data Wrangling: Develop a R program that transforms data from one format to another, such as

		11 th July 2023	1.00	Applicable for AY 2023-24
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

भ्रानादेव नु केवरन्यम्

(An Autonomous Institute Affiliated to CSVTU Bhilai)

SYLLABUS

B. Tech. Eight Semester- Computer Science & Engineering (Artificial Intelligence, Artificial Intelligence and Machine Learning, Bigdata Analytics, Internet of Things, Gaming Technology)

converting CSV files to JSON.

- 7. **Statistical Analysis:** Write a R program that performs statistical analysis on data, such as hypothesis testing, regression analysis, and ANOVA.
- 8. **Data Modeling:** Create a R program that builds predictive models using data, such as linear regression, decision trees, and random forests.
- 9. **Data Integration:** Develop a R program that integrates data from multiple sources, such as databases, APIs, and spreadsheets.
- 10. **Data Mining:** Write a R program that discovers patterns and relationships in data, such as association rules, clustering, and anomaly detection.
- 11. **Data Exploration:** Create a R program that explores data using techniques such as data profiling, summary statistics, and data visualization.
- 12. **Data Validation:** Develop a R program that validates data to ensure it meets certain criteria, such as data type, range, and format.
- 13. **Data Transformation:** Write a R program that transforms data by applying functions such as scaling, normalization, and feature engineering.
- 14. **Data Aggregation:** Create a R program that aggregates data by grouping, summarizing, and filtering data.
- 15. **Data Storage:** Develop a R program that stores data in a database or file system, such as MySQL, Postgre SQL, or Hadoop.

Text Books:

S. No.	Title	Author(s)	Publisher
1	Advanced R	Hadley Wickham	CRC Press

		11 th July 2023	1.00	Applicable for AY 2023-24
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

"ज्ञानादेव तु केवल्यम्"

(An Autonomous Institute Affiliated to CSVTU Bhilai)

SYLLABUS

B. Tech. Eight Semester- Computer Science & Engineering (Artificial Intelligence, Artificial Intelligence and Machine Learning, Bigdata Analytics, Internet of Things, Gaming Technology)

Subject Code CS102895	Capstone Project Phase II	L=0	T=0	P = 4	Credits = 2
Evaluation Scheme	ESE	СТ	ТА	Total	ESE Duration
	75	0	25	100	3 Hours

Guideline for Allocation of project:

CO 24 Hrs

- 1. Information regarding broad area must be made available to the students well in advance (may be during previous semester).
- 2. Information must cover following parameters. I. Broad area: Subject or expertise/application area. II. Required skills: Knowledge of subject(s), software, tools & other characteristics. III. Type of project: Hardware, software, design, survey, study based etc. IV. Guide available: Name of Guide (S) from Department & Institute. V. Other related information depending upon specific branch & institute.
- 3. It is also recommended to give proper counseling to pick up suitable project.
- 4. Students must get chance to select projects as per their choice or decided mutually between students and department faculty (HoD) concern.
- 5. One project group must contain maximum four students; however, students can do project individually but it should be approved by department.
- 6. Compiled list of projects must be submitted to the University within 25 days of start of semester.
- 7. Compiled list may contain following parameters.

Monitoring of project:

- 1. It is recommended to give projects as per the specializations of existing faculty of the department instead of outside person/agency.
- 2. Project must be allocated, developed and monitored by department / institution itself, but not by outside agencies.
- 3. Regular review by guide is recommended to ensure development & contribution of students. Internal

		11 th July 2023	1.00	Applicable for AY 2023-24
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute Affiliated to CSVTU Bhilai)

SYLLABUS

B. Tech. Eight Semester- Computer Science & Engineering (Artificial Intelligence, Artificial Intelligence and Machine Learning, Bigdata Analytics, Internet of Things, Gaming Technology)

Evaluation & Submission of project:

- 1. Evaluation of project would be as per the examination scheme of the University, which is based on internal as well as external evaluation.
- 2. Internal assessment requires submission of project report for getting approved by the concern authority. However, printing and binding would be as per the conventional format.
- 3. Evaluation will be based on live demonstration / presentation and Viva.
- Final submission of project is expected as, Submission of a copy to the University,

 One copy to the department.

External Evaluation:

External assessment of project would be like conduction of practical exams of university, and must be executed asper the norms of practical exams.

NOTE: Completion of Project outside the department/Institution should not be encouraged

		11 th July 2023	1.00	Applicable for AY 2023-24
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute Affiliated to CSVTU Bhilai)

SYLLABUS

B. Tech. Eight Semester- Computer Science & Engineering (Artificial Intelligence, Artificial Intelligence and Machine Learning, Bigdata Analytics, Internet of Things, Gaming Technology)

Professional Electives

Subject Code CS102821	Parallel Processing and Computing	L = 3	T = 2	P = 0	Credits = 3
Evaluation	ESE	СТ	ТА	Total	ESE Duration
Scheme	100	20	30	150	3 Hours

Course Objectives	Course Outcomes			
 The objective of the course to: Have an understanding of parallel algorithms, analysis and architectures. Be able to reason about ways to parallelize a problem Design and analyze the algorithms that execute efficiently on parallel computers 	 Students will be able to: CO1 To develop structural intuition of how the hardware and the software work, starting from simple systems to complex shared resource architectures. CO2 Get a broad understanding of parallel computer architecture and different models for parallel computing. CO3 To understand concepts related to memory consistency models, cache coherence, interconnection networks, and latency tolerating techniques. CO4 To know about current practical implementations of parallel architectures. CO5 To learn how to design parallel programs and how to evaluate their execution 			
UNIT-I : Introduction & Technique parallelism in Uniprocessor systems, Moore's law, Principles of Scalable	 c of Parallelism: Trends towards parallel computing, Architectural classification schemes, Amdahl's law, Performance, Parallel Processing in Memory, Parallel 			

Algorithms, Parallel Algorithm Complexity, Models of Parallel Processing, Cache
coherence, Cache coherence Protocols.CO 2UNIT-II: Pipeline & Vector Processing: Conditions of Parallelism: Data & Resource
dependencies, Program flow mechanisms: Control-flow vs. Data flow computers Principle of
pipelining and vector processing: principles of linear pipelining, classification of pipeline
processors. General pipelines and reservation tables. Instruction and arithmetic pipelines,
vector processing, architecture of Cray -1, Pipeline hazards, VLIW computers, Array
Processing.CO 2

		11 th July 2023	1.00	Applicable for AY 2023-24
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute Affiliated to CSVTU Bhilai)

SYLLABUS

B. Tech. Eight Semester- Computer Science & Engineering (Artificial Intelligence, Artificial Intelligence and Machine Learning, Bigdata Analytics, Internet of Things, Gaming Technology)

UNIT III. Devellet Drogromming Develigns, Massage Dessing Interface (MDI), Design of	CO 3
MDL Develled Serving (hiteria sert, percelled manage sert) and Secreting Algorithms, Develled	/Hrs
MPI, Paranel Sorting (bitomic sort, paranel merge sort) and Searching Algorithms, Paranel	
Matrix Operations, Matrix multiplication, Matrix inversion, Types of Data Routing	
Operations, Applications in scientific computing.	
	CO 4
UNIT-IV: Multiprocessor architecture and Programming: Emulation and Scheduling,	
Emulations among Architectures, Distributed Shared Memory, Data Storage, Input, and	7Hrs
Output, Multithreading and Latency Hiding, Parallel I/O Technology, Defect-Level Methods,	
Fault-Level Methods, Error-Level Methods, Parallel Programming Parallel Operating	
Systems, Parallel File Systems.	
	CO5
UNIT-V: Performance Optimization and Future Trends: Performance Analysis and	
Optimization Techniques, Profiling and benchmarking, Load balancing, Scalability	7Hrs
considerations. Emerging Trends in Parallel Computing. Quantum parallelism.	
Neuromorphic computing Cloud-based parallel computing Case Studies and Project Work	
Analyzing and optimizing real world parallal applications. Implementing a parallal	
commuting and optimizing real-world parallel applications, implementing a parallel	
computing project	

Text Books:

S. No.	Title	Author(s)	Publisher
1	Computer Architecture & Parallel processing.	Kai Hwang 7 Briggs William Stallings	McGraw Hill Education (India) Private Limited; Third edition.
2	Parallel Computers: Arch.& Prog.	Rajaraman & Siva Ram Murthy	PHI.

S. No.	Title	Author(s)	Publisher
1	Parallel Computer 2 –Arch & Algorithms	Adam Hilger, R.W. Hockney, C.R. Jesshope	
2	Advanced Computer Architecture with Parallel Programming",	K. Hwang,	MGH

		11 th July 2023	1.00	Applicable for AY 2023-24
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute Affiliated to CSVTU Bhilai)

SYLLABUS

3	Parallel computing- Theory and practice -	Michael J Quinn-	Mc Graw Hill
---	---	---------------------	--------------

Subject Code CS110822	Generative AI	L = 3	T = 1	P = 0	Credits = 3
	ESE	СТ	ТА	Total	ESE Duration
Evaluation Scheme	100	20	30	150	3 Hours

Course Objectives	Course Outcomes

		11 th July 2023	1.00	Applicable for AY 2023-24
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute Affiliated to CSVTU Bhilai)

SYLLABUS

The objective of the course to:	Studen	ts will be able to:		
1. Overview of generative models and their	CO1	Understand the fundamentals of generative	e AI and its	
applications.		applications.		
2. Overview of popular LLM architectures:	CO2	Explore practical implementation of general	tive models.	
ANNS, LSTMS, and Transformers.	CO3	Develop critical thinking skills for evaluatin	ng generative	
3. Overview of GF1 variants and then use	CO4	Al outputs.	anarativa AI	
4. Overview of various domains and industries	CU4	concepts	ellerative AI	
benefiting from Generative AI.	CO5	Apply generative AI techniques to creative	projects.	
UNIT 1 Introduction to Generative AI		1175 1	5	
Understand the fundamentals of generative AI and	nd its ap	pplications. difference from other types of	601	
AI? (supervised and unsupervised learning), the	e techno	ologies within generative AI, types of AI		
models, generative adversarial networks (GAI	Ns), va	riational autoencoders (VAEs), (GANs,	7 Hrs.	
VAEs, etc.), use cases: art, music, text generation	n, ethica	al considerations in generative AI.		
UNIT 2 Building Blocks of Generative Models	and L	anguage Models		
The role of NLP, deep Learning, and machine learning in generative AI, probability distributions,			CO2	
loss functions, training and evaluation, transformers & how transformers work? deep learning-			CO2 8 Um	
based language models and their advantages, overview of popular LLM architectures: recurrent				
neural networks (RNNs), LSTMs, and transformer architecture, fine-tuning language models.				
UNIT 3 Generative AI Work and Programmin	ng			
how does generative AI work? training, prepro	cessing	, model architecture, training the model,	CO3	
generating new content, programming with generative AI: - python libraries for generative AI			7 Hrs	
(TensorFlow, PyTorch, etc.), critiquing AI-gen	erated of	code: - quality assessment metrics, bias,	/ 1115.	
fairness detection and mitigation, code readability and maintainability, peer code reviews.				
UNIT 4 Text, Image and Art Generation				
Image and video generation: - create visual art	and in	nages using generative techniques, music		
generation, natural language processing: text generation: - creative writing with AI, speech				
synthesis, generating digital art, style transfer.			7 Hrs	
Understanding GPT (Generative Pre-Trained Transformer): - introduction to GPT and its			/ 111.50	
significance, pre-training and fine-tuning proce	sses in	GPT, architecture and working of GPT		
models, overview of GPT variants and their use of	cases.			

		11 th July 2023	1.00	Applicable for AY 2023-24
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute Affiliated to CSVTU Bhilai)

SYLLABUS

B. Tech. Eight Semester- Computer Science & Engineering (Artificial Intelligence, Artificial Intelligence and Machine Learning, Bigdata Analytics, Internet of Things, Gaming Technology)

UNIT 5 Use Cases of Generative AI in Real-World Applications and Future Trends	
Overview of various domains and industries benefiting from generative AI applications: -	CO5
healthcare, retail, banking and finance, media and entertainment, manufacturing, education,	7.11
fashion, importance of generative AI in various domains, research challenges and future of	/ Hrs.
generative AI, the dark side of generative AI: - pseudo-images and deep fakes.	

Text Books:

S. No.	Title	Author(s)	Publisher
1	Introduction to Generative AI: An Ethical, Societal, and Legal Overview	Maggie Engler and Numa Dhamani	Manning Publications
2	Generative AI with Python and TensorFlow 2	Joseph Babcock, Raghav Bali	Packt Publications

S. No.	Title	Author(s)	Publisher
1	Generative Deep Learning 2nd Edition	David Foster	O'Reilly Media, Inc.

		11 th July 2023	1.00	Applicable for AY 2023-24
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute Affiliated to CSVTU Bhilai)

SYLLABUS

B. Tech. Eight Semester- Computer Science & Engineering (Artificial Intelligence, Artificial Intelligence and Machine Learning, Bigdata Analytics, Internet of Things, Gaming Technology)

Alternative NPTEL/SWAYAM Course (if any):

S. No.	NPTEL Course Name	Instructor, Host Institute	Link
1	Leveraging Generative AI for Teaching Programming Courses	IISc Bangalore	https://elearn.nptel.ac.in/shop/iit- workshops/completed/leveraging- generative-ai-for-teaching-programming- courses

		11 th July 2023	1.00	Applicable for AY 2023-24
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute Affiliated to CSVTU Bhilai)

SYLLABUS

B. Tech. Eight Semester- Computer Science & Engineering (Artificial Intelligence, Artificial Intelligence and Machine Learning, Bigdata Analytics, Internet of Things, Gaming Technology)

Subject Code CS110823	Introduction to Quantum Computing	L = 3	T = 2	$\mathbf{P} = 0$	Credits = 3
Evaluation	ESE	СТ	ТА	Total	ESE Duration
Scheme	100	20	30	150	3 Hours
	Course Objectives		Co	urse Out	comes
The objective of the c	ourse to:	Students v	vill be at	ole to:	
1. A basic introdu	uction to quantum mechanics, linear	CO1: Lea	arn Elen	nentary (Quantum
algebra and fa	miliarity with the Dirac notation is	Mechanic	es.		
provided first to	get one's quantum moorings right.	CO2: Lea	arn Quai	ntum Co	rrelation
2. This is then following another comp	utation and quantum information	CO3: UII CO4: Un	derstand	l Quantu l Quantu	In Cryptography
covering aspects	s of quantum entanglement, quantum	CO4: Off CO5: pro	gram a	Ouantur	n Computer.
algorithms, quar	ntum channels. Rudimentary quantum	e o e i pro	B	2	
computing is in	ntroduced using the IBM quantum				
computer and as	sociated simulators.				
					CO 1
TINIT 1 Inter des de		1	- 1 1	6	
	on: Elementary quantum mechanics:	, linear	algebra	for qua	ntum 8Hrs
mechanics, Quantur	m states in Hilbert space, The Blo	ch sphere	e, Densi	ity oper	ators,
generalized measure	ments, no-cloning theorem.				
		1.	1		
UNIT 2 Quantui	m correlations: Bell inequalities	and ent	angleme	ent, Sch	imidt /nrs
decomposition, supe	rdense coding, teleportation.				
UNIT 3 Quantum cryptography: quantum key distribution.					/Hrs
UNIT 4 Quantum gates and algorithms: Universal set of gates, quantum circuits, Solovay-					
Kitaev theorem, Deu	itsch-Jozsa algorithm, factoring				
					CO 5
UNIT 5 Programm	ning a quantum computer:The IBMQ	, coding	a quant	um com	puter 7 Hrs
using a simulator to	carry out basic quantum measurement	and state a	analysis.		

Text Books:

		11 th July 2023	1.00	Applicable for AY 2023-24
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute Affiliated to CSVTU Bhilai)

SYLLABUS

B. Tech. Eight Semester- Computer Science & Engineering (Artificial Intelligence, Artificial Intelligence and Machine Learning, Bigdata Analytics, Internet of Things, Gaming Technology)

S. No.	Title	Author(s)	Publisher
1	An introduction to Quantum Computing,	Phillip Kaye, Raymond Laflamme et. al.,	Oxford University press, 2007.
2	Quantum Computing for Everyone,	Chris Bernhardt,	The MIT Press, Cambridge, 2020

S. No.	Title	Author(s)	Publisher
1	Quantum Computing Explained	David McMahon	Wiley-Inter-science, IEEE Computer Society (2008)
2	Quantum Computation and Quantum Information,	M. A. Nielsen & I. Chuang,	Cambridge University Press (2013).
3	Quantum Computing, A Gentle Introduction,	Eleanor G. Rieffel and Wolfgang H. Polak	MIT press (2014)

		11 th July 2023	1.00	Applicable for AY 2023-24
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute Affiliated to CSVTU Bhilai)

SYLLABUS

Subject Code CS110824	Reinforcement Learning	L = 3	T = 0	P = 0	Credits = 3
English from Column	ESE	СТ	ТА	Total	ESE Duration
Evaluation Scheme	100	20	30	150	3 Hours

Course Objectives	Course Outcomes			
 The objective of the course to: Learn about Bellman equations and optimality and TD. Learn about transition dynamics and reward functions. Learn about hierarchical reinforcement learning. Build a Reinforcement Learning system for sequential decision making. 	 Students will be able to: CO1 Understand the basics of reinforcement learning and MDPs. CO2 Understand basic exploration methods. CO3 Understand the multi-armed bandit problem and explore algorithms. CO4 Understand linear function approximation. CO5 Understand the space of RL algorithms 			
UNIT 1 Fundamentals of Reinforcement Learning, Introduction to reinforcement learning (RL) Markov decision processes (MDPs), Bellman equations and optimality, Dynamic programming and temporal difference (TD) methods.				
UNIT 2 Bandit Algorithms and Exploration, Multi-armed bandit problem, Upper Confidence Bound (UCB) algorithm, Probably Approximately Correct (PAC) bounds for bandits, Median Elimination algorithm, Policy Gradient methods for bandits.				
UNIT 3 Full Reinforcement Learning and Value Iteration, Transition dynamics and reward functions, Value iteration and policy iteration, Model-based vs. model-free RL, Exploration vs. exploitation trade-offs.				
UNIT 4 Function Approximation in Deep RL, Linear function approximation, Least Squares methods, Fitted Q-learning, Deep Q Networks (DQN).				
UNIT 5 Advanced Topics in RL, Hierarchical reinfor Markov Decision Processes (POMDPs), Eligibility traces,	CO5 Policy Gradient methods for full RL			

		11 th July 2023	1.00	Applicable for AY 2023-24
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute Affiliated to CSVTU Bhilai)

SYLLABUS

B. Tech. Eight Semester- Computer Science & Engineering (Artificial Intelligence, Artificial Intelligence and Machine Learning, Bigdata Analytics, Internet of Things, Gaming Technology)

Text Books:

S. No.	Title	Author(s)	Publisher
1	Reinforcement Learning	Phil Winder	O'Reilly Media, Inc.
2	Reinforcement Learning an Introduction 2nd Edition	Richard S. Sutton & Andrew G. Barto	The MIT Press

Alternative NPTEL/SWAYAM Course (if any):

S. No.	NPTEL Course Name	Instructor, Host Institute	Link
1	Reinforcement Learning	Prof. Balaraman Ravindran, IIT Madras	https://onlinecourses.nptel.ac.in/noc19_cs55/preview

		11 th July 2023	1.00	Applicable for AY 2023-24
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

"ज्ञानादेव तु केवल्यम्"

(An Autonomous Institute Affiliated to CSVTU Bhilai)

SYLLABUS

B. Tech. Eight Semester- Computer Science & Engineering (Artificial Intelligence, Artificial Intelligence and Machine Learning, Bigdata Analytics, Internet of Things, Gaming Technology)

Open Electives

Subject Code CS100841	Cyber Law & Intellectual Property	L = 3	T = 1	P = 0	Credits = 3
Evaluation Scheme	ESE	СТ	ТА	Total	ESE Duration
	100	20	30	150	3 Hours

Course Objectives Course Outcomes		
The objective of the course to:	Students will be able to:	
4. To make attentive to students about	CO6 Understand the cyber security threat lan	dscape.
different cybercrimes.	CO7 Understand cybercrimes and cyber laws	5.
5. To understand key terms and concepts in	CO8 Understand various privacy and sec	urity concerns on
cybercrimes and cyber law.	online social media its legal aspects and	best practices.
6. To make attentive to students about	CO9 Understand the important and appli	cation of IPR its
security privacy and challenges.	regulations.	
7. To make attentive to students about	CO10	
copyright and patents.	nderstand the application process of pa	atent file and other
	related aspects such as search, registrati	on and grant.
UNIT 1 Introduction to Cybercrimes		
Definition, cybercrime and information secur	rity, classes of cybercrime and categories,	CO 1
cyber offences, cybercrimes with mobile and wireless devices, cybercrime against		7 Hrs.
women's and children, financial frauds, social engineering attacks.		
UNIT 2 Cybercrime and Cyber Law		
Malware and ransom ware attacks, zero day	and zero click attack, legal perspective of	CO2
cybercrime, IT Act 2000 and its amendmen	nts, cybercrime and offence, organization	8 Hrs.
dealing with cybercrime and cyber security in I	India, case studies.	
UNIT 3 Social Media Overview and Security	Ŷ	
Introduction to social network, types of social	media, social media platforms, social media	
monitoring, hash tag, viral content, social r	CO3	
challenges, opportunities and pitfalls in online	7 Hrs.	
social media, flagging and reporting of inapp		
inappropriate content, best practices for the use		
UNIT 4 Introduction to Intellectual Property	v Rights (IPR)	CO4
Introduction to IPR, international instrument	ts and IPR, basic concepts and need for	7 Hrs.

		11 th July 2023	1.00	Applicable for AY 2023-24
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

SYLLABUS

B. Tech. Eight Semester- Computer Science & Engineering (Artificial Intelligence, Artificial Intelligence and Machine Learning, Bigdata Analytics, Internet of Things, Gaming Technology)

intellectual property – patents, copyrights, trademarks, geographical indications, world intellectual property organization (WIPO) TRIPS WTO laws relating to IPR in India and	
Abroad, IPR tool kit, protection and regulation, copyright and neigh boring rights, agency	
for IPR registration, meaning and practical aspects of registration of patents, copyrights,	
trademarks, geographical indications, trade secrets and industrial design registration in	
India and Abroad, emerging area of IPR, use and misuse of intellectual property rights.	
UNIT 5 Patent's	
Introduction to patents, laws relating to patents in India, patent requirements, product	
patent and process patent, patent search, patent registration and granting of patent,	CO5
avaluative mights and limitations any marship and transfer reveasion of restant restant	7 Hrs.
exclusive lights and initiations, ownership and transfer, revocation of patent, patent	
appellate board, infringement of patent, compulsory licensing, patent cooperation treaty,	

Text Books:

त्यम '

S. No.	Title	Author(s)	Publisher
1	Cyber Security Understanding Cyber Crimes, Computer Forensics and Legal Perspectives	Sumit Belapure and Nina Godbole	Wiley India Pvt. Ltd. (First Edition 2011)
2	Cyber Laws: Intellectual Property & E-Commerce Security	Kumar K.	Dominant Publisher
3	Intellectual Property Rights (Patents & Cyber Law)	Dr. A. Srinivas	Oxford University Press, New Delhi

S. No.	Title	Author(s)	Publisher
1	Cyber Law Text & Cases	Gerald R. Ferrera, Margo E.K. Reder	Cengage Learning Publication
2	Intellectual Property (Trade Marks and the Emerging Concepts of Cyber Property Right (HB))	P. Narayanan	Universal Book Traders (3rd Edition HB)

		11 th July 2023	1.00	Applicable for AY 2023-24	
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards	

(An Autonomous Institute Affiliated to CSVTU Bhilai)

SYLLABUS

		11 th July 2023	1.00	Applicable for AY 2023-24
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards